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1. Introduction

One of the attractive aspects of AdS/CFT [1] is applicability to the real systems after

certain amount of deformations. In fact it has been suggested that the fireball in Relativistic

Heavy Ion Collision (RHIC) can be explained from dual gravity point of view [2 – 5], since

the quark-gluon systems created there are in the strong coupling region [6]. Although the

YM theory described by the standard AdS/CFT is large-Nc N = 4 SYM theory, there are

many attempts to construct models closer to QCD [7]. SUSY is not very relevant in the

finite temperature context because it is broken completely.

Since the RHIC fireball is expanding, we need to understand AdS/CFT in the time

dependent situations. Recently, Janik and Peschanski [8, 9] discussed this problem in non-

viscous cases. They use the conservation law and conformal invariance together with the

holographic renormalization [10, 11] to express the bulk geometry with given boundary

data. As a result, the bulk geometry reproduces the basic features of Bjorken theory [12].

It is also pointed out that inclusion of shear viscosity, although the value is small, is very

important in the analyses of real RHIC physics since it plays an essential role in the elliptic

flow (see for example, [13, 14]). In fact, the shear viscosity at the strong coupling limit was

calculated for the N = 4 SYM systems in ref. [15] using AdS/CFT. So it is natural to ask

how the bulk geometry changes if we include the viscous effects in the boundary theory.

– 1 –



J
H
E
P
0
9
(
2
0
0
6
)
0
2
0

In this paper, we establish the dual geometry in the presence of shear viscosity by

using the hydro-dynamics as the boundary data. Although our gauge theory is not QCD,

we hope there is universal features in the character of strongly interacting gauge theory

systems. In fact hydrodynamics, which is our input does not ask much about the details of

the microscopic particles and the interactions once the equation of state is given. Therefore

we have a chance to extract useful information on the macroscopic properties of the real

quark-gluon fluid based on this universality.

If what we get is consistency with fluid dynamics, there would not be much point to

consider AdS/CFT dual of it. In fact, the holographic dual of the hydrodynamics contains

much more information than the hydrodynamics since AdS/CFT already contains essential

information of microscopic gauge theory dynamics. For example, we will show that the

holographic dual of the hydrodynamics gives integration constants in the hydrodynamic

equations that cannot be determined by hydrodynamics alone. The dual geometry also

gives a simple derivation of Stefan-Boltzmann’s law in strongly coupled regime with precise

Stefan-Boltzmann constant.

The organization of the paper is the following. In section 2, we analyze time dependence

of the system in the framework of the relativistic hydrodynamics. We also review the basics

of the dissipative relativistic hydrodynamics in order to clarify our setup. Section 3 gives

the analysis in the gravity dual. We review the basic framework of the gravity dual and

present some results for non-viscous cases obtained in ref. [8]. The main results of the

present work will be given in section 3.3 where the late time dual geometry is proposed and

consistency with the hydrodynamic analyses is checked. We will show that the holographic

dual of the hydrodynamics contains more information than the hydrodynamics. We also

make comments on the regularity of the bulk geometry in section 4. We conclude in the

final section.

2. Relativistic hydrodynamics with shear viscosity

We begin with a short review of the relativistic hydrodynamics with dissipation. For the

relevance to the RHIC fireball, we assume that it is described by the finite temperature

theory of a variant of N = 4 SYM. We also follow the Bjorken’s picture [12]. In the

Bjorken’s model, the system undergoes one-dimensional expansion (Bjorken expansion)

along the collision axis of the heavy ions, and the fluid of the quarks and gluons has boost

symmetry in the so-called central rapidity region [12]. We shall consider only the late-

time regime of the Bjorken expansion where the time evolution is slow enough to employ

approximations.1

The energy-momentum tensor in the framework of relativistic hydrodynamics is known

to be2

T µν = (ρ+ P )uµuν + Pgµν + τµν , (2.1)

1Realistic model should contain three-dimensional expansion as tried in ref. [4]. There, it was suggested

to use a dual of three-dimensional cosmic expansion.
2The convention of the signature of the metric is (−,+,+,+) in this paper.
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where ρ, P are the energy density and the pressure of the fluid, and uµ = (γ, γ~v) is the

four-velocity field in terms of the local fluid velocity ~v. τ µν is the dissipative term. In a

frame where the energy three-flux vanishes, τ µν is given in terms of the bulk viscosity ξ

and the shear viscosity η by

τµν = −η(4µλ∇λuν +4νλ∇λuµ −
2

3
4µν ∇λuλ)− ξ4µν ∇λuλ, (2.2)

under the assumption that τµν is of first order in gradients. We have defined the three-

frame projector as 4µν = gµν + uµuν .

In this paper, we consider pure N = 4 SYM theory whose energy-momentum tensor

is traceless. Now, the trace of the energy-momentum tensor is given by

T µµ = −ρ+ 3P − 3ξ∇λuλ. (2.3)

Demanding T µµ = 0 for all the possible frames where (2.2) is valid, we obtain

ξ = 0, and ρ = 3P. (2.4)

Notice that the bulk viscosity in the realistic RHIC setup might also be negligible. (See

for example, ref. [14].)

We assume that our fluid system is boost invariant following Bjorken [12] since it is

actually supported by experiments. We want to take a “co-moving frame” where each point

of the fluid labels the coordinate, a concept called Lagrangian frame in fluid dynamics. In

this frame all the fluid points are at rest by definition, hence all the fluid points share the

same proper time. We can use the rapidity of each fluid-point as a spatial coordinate and

the common proper time of each fluid-point as a time coordinate. Therefore a local rest

frame (LRF) of the fluid can be given by proper time(τ)-rapidity(y), whose relationship

with the cartesian coordinate is (x0, x1, x2, x3) = (τ cosh y, τ sinh y, x2, x3). We have chosen

the collision axis to be in the x1 direction.

The Minkowski metric in this coordinate has the form of

ds2 = −dτ2 + τ2dy2 + dx2
⊥, (2.5)

where dx2
⊥ = (dx2)2 + (dx3)2. We assume that the collision happened at τ = 0 and we

consider only τ ≥ 0 region. Note that |y| ∼ ∞ corresponds to the fronts of the expanding

fluid. Therefore, the whole region on the y-coordinate axis is occupied by the fluid. We

also assume that the fluid is extended in the x2, x3 directions homogeneously. Since the

real fireball produced by RHIC experiment is localized, the set up we use is an idealized

one. Nevertheless, the present setup is proper since we are interested in the central rapidity

region.

The four-velocity of the fluid at any point in the LRF is uµ = (1, 0, 0, 0), and this

makes the energy-momentum tensor to be diagonal:

T µν =




ρ 0 0 0

0 1
τ2

(
P − 4

3
η
τ

)
0 0

0 0 P + 2
3
η
τ 0

0 0 0 P + 2
3
η
τ


 . (2.6)
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We have three independent quantities, ρ, P and η in (2.6). However, the energy-momentum

conservation, ∇µT µν = 0, together with the equation of state ρ = 3P , reduces the number

of the independent quantities to be one. One finds that the energy-momentum tensor is

written by using only ρ in the following way:

T µν =




ρ 0 0 0

0 1
τ2 (−ρ− τ ρ̇) 0 0

0 0 ρ+ 1
2τ ρ̇ 0

0 0 0 ρ+ 1
2τ ρ̇


 , (2.7)

where ρ̇ ≡ dρ
dτ . By identifying (2.6) with (2.7), we obtain the following differential equation

that connects η and ρ:3

dρ

dτ
= −4

3

ρ

τ
+

4

3

η

τ2
. (2.8)

Note that both of ρ and η depend on the proper time τ in general. Let’s assume that the

shear viscosity evolves by

η =
η0

τβ
, (2.9)

where η0 is a positive constant. The solution of (2.8) is then given by

ρ(τ) =
ρ0

τ4/3
+

4η0

1− 3β

1

τ1+β
(for β 6= 1/3), (2.10)

ρ(τ) =
ρ0

τ4/3
+

4η0

3

ln(τ)

τ4/3
(for β = 1/3), (2.11)

where ρ0 is a positive constant. For β ≤ 1/3 case, the viscous corrections in the hydrody-

namic quantities become dominant in the late time, which invalidates the hydrodynamic

description. If β > 1
3 , the shear viscosity term is sub-leading in the late time behavior as

we expect. Therefore we will consider only β > 1
3 case from now on.

The proper time dependence of the temperature T can be read off by assuming the

Stefan-Boltzmann’s law ρ ∝ T 4:

T = T0

(
1

τ1/3
+
η0

ρ0

1

1− 3β

1

τβ
+ · · ·

)
. (2.12)

In the static finite temperature system of strongly coupled N = 4 SYM theory, it is known

that η ∝ T 3 [15]. Let us assume that the same is true in the slowly varying non-static

cases. Then we set β = 1:

η =
η0

τ
. (2.13)

3Equation (2.8) turns out to be the same as the one appearing in so-called first order (or standard)

dissipative relativistic hydrodynamics. (See for example, ref. [16] and the cited therein.) It is known that

the first order formalism has a problem of acausal signal propagation. However, it gives good enough results

for our purposes. The details of the causal dissipative relativistic hydrodynamics and consistency of our

analysis are shown in appendix B.
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We know ρ ∼ T 4 and η ∼ T 3 cannot be consistent without an additional term in (2.13),

but the correction term is negligible in our case. One can check the consistency of our

approach in appendix C. The temperature behavior is then given by

T = T0

(
1

τ1/3
− η0

2ρ0

1

τ
+ · · ·

)
. (2.14)

We can evaluate the entropy change in the presence of shear viscosity by using hydro-

dynamics. The conservation of energy-momentum tensor can be rewritten as

d(τρ)

dτ
+ P =

4η

3τ
. (2.15)

Using the nature of the one-dimensional expansion, the above can be rephrased as

T
d(τs)

dτ
=

4η

3τ
, (2.16)

where s denotes the entropy density and τs ≡ S is the entropy per unit rapidity and unit

transverse area.4 Notice that in the absence of viscosity, S is constant. Now, the entropy

per unit rapidity and unit transverse area has time dependence,

S(τ) =

∫
dτ

4η

3τT

= S∞ − 2
η0

T0
τ−2/3 +O(τ−4/3), (2.17)

due to creation of entropy by dissipation. However, the creation rate of the entropy slows

down with time. S∞, that is the entropy per unit rapidity and unit transverse area at

τ = ∞, is an integration constant which we cannot determine in the framework of hy-

drodynamics. We will show that its precise value is given by using the gravity dual in

section 3.

3. Holographic Dual of Hydrodynamics

In this section, we will find a five-dimensional metric which is dual to the hydrodynamic

description of the YM fluid in the previous section. The basic strategy is to use the

Eistein’s equation together with the boundary condition given by the energy-momentum

tensor at the boundary [10, 11, 8]. We consider general asymptotically AdS metrics in the

Fefferman-Graham coordinate:

ds2 = r2
0

gµνdx
µdxν + dz2

z2
, (3.1)

where xµ = (τ, y, x2, x3) in our case. r0 ≡ (4πgsNcα
′2)1/4 is the length scale given by the

string coupling gs and the number of the colors Nc. The four-dimensional metric gµν is

expanded with respect to z in the following form [10, 11]:

gµν(τ, z) = g(0)
µν (τ) + z2g(2)

µν (τ) + z4g(4)
µν (τ) + z6g(6)

µν (τ) + · · · . (3.2)

4A precise definition of S is the entropy within a unit 3d region on the (y, x2, x3) coordinate. The volume

of this region is τ and it is expanding with time in the x1 direction.
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g
(0)
µν is the physical four-dimensional metric for the gauge theory on the boundary, that is

given by (2.5) in the present case. The g
(n)
µν ’s depend only on τ because of the translational

symmetry in the x2, x3 directions and the boost symmetry in the y direction in our setup.

g
(2)
µν is found to be zero. We can identify the first non-trivial data in (3.2), g

(4)
µν , with the

energy-momentum tensor at the boundary [10]:

g(4)
µν =

4πG5

r3
0

〈Tµν〉, (3.3)

where G5 is the 5d Newton’s constant given by G5 = 8π3α′4g2
s/r

5
0 in our notation. For the

time being, we set 4πG5 = 1 and r0 = 1. The higher-order terms in (3.2) are determined

by solving the Einstein’s equation with negative cosmological constant Λ = −6 [10, 8]:

RMN −
1

2
GMNR− 6GMN = 0, (3.4)

where the metric and the curvature tensor are for the five-dimensional ones of (3.1). g
(2n)
µν

is described by g
(2n−2)
µν , g

(2n−4)
µν , · · · , g(0)

µν through solving the Einstein’s equation. In other

words, we can obtain the higher-order terms in (3.2) recursively by starting with the initial

data g
(0)
µν (∼Minkowski) and g

(4)
µν (∼ Tµν).

3.1 Static cases

In order to demonstrate the use of the above procedure, we first workout the static case

using cartesian coordinate xµ = (t, x1, x2, x3) instead of the Bjorken’s coordinate. The

energy-momentum tensor in this case is given by

Tµν = diag (ρ, ρ/3, ρ/3, ρ/3) . (3.5)

The result of the above procedure gives the solution of the Einstein’s equation in Fefferman-

Graham co-ordinate:

ds2 =
1

z2

{
−(1− ρ

3z
4)2

1 + ρ
3z

4
dt2 +

(
1 +

ρ

3
z4
)

(dx2
1 + dx2

2 + dx2
3)

}
+
dz2

z2
, (3.6)

which is equivalent to the AdS-Schwarzschild Black hole.5 The Hawking temperature is

given by

TH =
√

2/(z0π), (3.7)

where z0(τ) = [3/ρ]1/4 is the position of the horizon. By restoring 4πG5 and r0 ≡
(4πgsNcα

′2)1/4, and by identifying TH with gauge theory temperature T , we obtain the

Stefan-Boltzmann’s law6

ρ =
r3

0

4πG5

3π4

4
T 4
H =

3

8
π2N2

c T
4. (3.8)

This result agrees with ref. [17].

5Notice that the metric is mapped to the standard form of the AdS-Schwarzschild metric through the

coordinate transformation z̃ = z/
p

1 + z4/z4
0 .

6Actually Stefan Boltzmann’s law is about intensity I = cρ/4 in terms of temperature. But we use the

terminology abusively to name (3.8).
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3.2 Non-viscous time dependent cases

Coming back to Bjorken’s setup, Janik and Peschanski obtained the late time bulk metric [8]

by the above procedure. Here we briefly review their work in our language. By using (2.7)

and (2.10), the energy-momentum tensor for non-viscous case is explicitly written as

Tµν =




ρ0

τ4/3 0 0 0

0 τ2 ρ0

3τ4/3 0 0

0 0 ρ0

3τ4/3 0

0 0 0 ρ0

3τ4/3


 . (3.9)

Then the metric is given by

gττ = −1 +
ρ0

τ4/3
z4 +O(z6),

gyy
τ2

= 1 +
ρ0

3τ4/3
z4 +O(z6),

gxx = 1 +
ρ0

3τ4/3
z4 +O(z6), (3.10)

where gxx = g22 = g33. Notice that our Minkowski metric is given by (2.5). Let’s focus

on the late time behaviour of the metric, since Tµν is given only for the late time.7 If we

take τ →∞ limit naively, what we obtain is just the Minkowski metric (2.5). To extract a

non-trivial result, the authors of ref. [8] take the limit such that g (4)z4 does not go to zero

nor infinity as τ →∞:

τ →∞ with
z

τ1/3
≡ v fixed. (3.11)

Then by solving the Einstein’s equation recursively up to certain order of z, we find gττ ,

gyy/τ
2 and gxx have the following structure:

f (1)(v) + f (2)(v)/τ4/3 + · · · . (3.12)

By neglecting the O(τ−4/3) quantities, they obtained an analytic expression of the late

time metric:

ds2 =
1

z2

{
−

(1− ρ0

3
z4

τ4/3 )2

1 + ρ0

3
z4

τ4/3

dτ2 +

(
1 +

ρ0

3

z4

τ4/3

)
(τ2dy2 + dx2

⊥)

}
+
dz2

z2
. (3.13)

We can explicitly check that the above metric satisfies

GLM (RMN −
1

2
GMNR− 6GMN ) ∼ O(1/τ 4/3). (3.14)

Notice that (3.13) is a black hole in AdS space with time-dependent horizon. The time

dependence of the entropy and the Hawking temperature from the metric (3.13) reproduces

the Bjorken’s results [12] S ∼ constant as well as T ∼ τ−1/3. Interestingly, they observed

that the regularity of the geometry at the horizon uniquely selects the power of time

7The slow time evolution is necessary to justify the hydrodynamic treatment of the fluid.
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evolution of the energy density ρ ∼ τ−4/3, which is a consequence of hydrodynamics. (See

section 4 for the details.)

If we replace ρ = ρ0

3
1

τ4/3 with ρ = ρ0

3
log τ
τ4/3 , we find that the left-hand-side of (3.14) is at

the order of 1/(τ 4/3 log τ). In this sense, this replacement makes another late time solution

of (3.4). We will use this solution in section 4.

3.3 Viscous cases

Let us come back to our main interest to obtain the bulk geometry in the presence of shear

viscosity. The energy-momentum tensor for β = 1 is written by using (2.7) and (2.10) as

Tµν =




ρ0

τ4/3 − 2η0

τ2 0 0 0

0 τ2
(

ρ0

3τ4/3 − 2η0

τ2

)
0 0

0 0 ρ0

3τ4/3 0

0 0 0 ρ0

3τ4/3



. (3.15)

We find that the metric components, gττ , gyy/τ
2, gxx have the following structure by

solving the Einstein’s equation recursively:

f (1)(v) + η0h
(1)(v)/τ2/3 + f̃ (2)(v)/τ4/3 + · · · , (3.16)

Note that the viscosity dependent terms exist at the order of τ−2/3 and these are more

important than the higher-order terms neglected in (3.13). We are considering the late

time region τ À 1. But to see the effects of viscosity, we need to keep the terms at least

to the order of τ−2/3. In this paper we consider the viscosity effects to the minimal order.

Now we solve the Einstein’s equation recursively. The power series that appear in

the solution can be re-summed to give a compact form of the metric. For the detail, see

appendix A. The late time 5d bulk geometry is given by

ds2 =
1

z2

{
−(1− ρz4

3 )2

1 + ρz4

3

d2τ

+

(
1 +

ρz4

3

)(
1 + ρz4

3

1− ρz4

3

)−2γ

τ2d2y +

(
1 +

ρz4

3

)(
1 + ρz4

3

1− ρz4

3

)γ
d2x⊥

}

+
dz2

z2
, (3.17)

where

γ ≡ η0

ρ0τ2/3
and ρ =

ρ0

τ4/3
− 2η0

τ2
. (3.18)

Notice that the energy momentum tensor (3.15) can NOT be written in terms of whole

ρ(τ). It is truly amazing that the final metric nevertheless can be written in terms of ρ(τ)

(apart from the powers) in the compact way. This implies that the position of the horizon

can be determined solely by the energy density.8

8One should keep in mind that we are looking for the late time geometry; the metric (3.17) is correct

only to the order of γ and the O(γ2) contributions are not unambiguously determined. The representation

of (3.17) is chosen since it makes the volume of the horizon finite.

– 8 –
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The Hawking temperature in the adiabatic approximation is given by T (τ) =
√

2/π(z0

(τ)), where z0(τ) = [3/ρ(τ)]1/4 is the time dependent position of the horizon. Just as the

static case, we obtain

ρ =
3

8
π2N2

c T
4(τ), (3.19)

by restoring 4πG5 and r0. The entropy per unit rapidity and unit transverse area is given by

S =
1

4G5

2
√

2τr3
0

z3
0(τ)

=

(
N2
c

2π

)1/4 (π
3

)3/4
2
√

2ρ
3/4
0

(
1− 3

2

η0

ρ0τ2/3
+O(τ−4/3)

)
. (3.20)

One remarkable thing is that the value of S at τ = ∞, that cannot be determined by

hydrodynamics alone, is precisely determined to be

S∞ =

(
N2
c

2π

)1/4 (π
3

)3/4
2
√

2ρ
3/4
0 , (3.21)

in terms of the initial condition ρ0.

Let us check consistency of (3.20) and (2.17). The normalized entropy-creation rate is

given by

1

S

dS

dτ
=

η0

ρ0τ5/3
+O(τ−7/3) (3.22)

from the gravity dual and

1

S

dS

dτ
=

4

3

η0

T0S∞τ5/3
+O(τ−7/3) (3.23)

from (2.17) of the hydrodynamics. Comparing (3.22) and (3.23), we obtain

S∞ =
4

3

ρ0

T0
=

4

3

ρτ

T

∣∣∣∣
τ=∞

. (3.24)

This is nothing but the relationship among the entropy, the energy (per unit rapidity and

unit transverse area) and the temperature obtained by thermodynamics at τ = ∞ where

the system reaches thermal equilibrium.

Before closing this section, let us give a technical remark to clarify the meaning of

the late time limit (3.11). The readers might want to skip this paragraph at first reading.

One finds that the higher order terms we have neglected in (3.12) and (3.16) contain the

terms proportional to v6τ−4/3 for example. On the other hand, the leading order terms

in gττ contains arbitrary higher power of v. Therefore, neglect of the O(τ−4/3) terms is

justified only when v is larger than O(1). In fact, we can justify the limit (3.11) when we

extract the thermodynamic quantities of the system. Such quantities are associated with

the horizon of the black hole and the value of v at the horizon is indeed O(1) constant at

the late time. Now, we understand why the naive τ → ∞ limit on the z-coordinate (the

– 9 –
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limit with fixing z to be constant) is not good for our purpose. The position of the horizon

grows with time: z0 ∼ τ1/3. If we treat z to be a constant in the τ →∞ limit, the region

we describe becomes infinitely far from the horizon. In other words, neglect of the terms

of (z/τ 1/3)n (n > 0) is not justified around the horizon. This means, a suitable coordinate

is the v-coordinate rather than the z-coordinate to describe near the horizon at τ →∞.

4. Conditions on energy density and bulk singularity

In ref. [8], singularity analysis was used to select a physical metric. Namely, starting with

energy density (without viscosity)9

ρ =
ρ0

τ l
, (4.1)

it is found that the late time bulk geometry is singular except for a special value of l.

More precisely, (RMNKL)2 at the order of (τ)0 has singularity at the horizon except for

l = 4
3 , the value for the perfect fluid. In fluid dynamics, this value of l is determined by

the conservation law and the equation of state. However the above means the bulk metric

knows the correct form of the energy density independently [8]. Therefore it is interesting

to see whether requiring the regularity of the metric at the horizon gives further control

over the behavior of the viscous term as well. The late time bulk geometry with generic

value of β can be obtained through similar calculations starting with the energy-momentum

tensor (2.7) with ρ given in (2.10) or (2.11).

If β < 1/3, the viscous correction in ρ is dominant at the late time and ρ ∼ 1/τ 1+β

from (2.10). This leads to the singular geometry since the proper time dependence of the

dominant term in ρ, 1/τ 1+β , is not 1/τ 4/3.

If β > 1/3, the viscous correction is sub-leading and we should consider (RMNKL)2

to the sub-leading order. The late time geometry is in the same form of (3.17) except the

following replacement

γ → γ′ ≡ η0/(ρ0τ
β−1/3), (4.2)

and with ρ given by (2.10). We find that (RMNKL)2 has the following structure:

(RMNKL)2 =
8(5w16 + 20w12 + 174w8 + 20w4 + 5)

(1 + w4)4
+O(τ−4/3), (4.3)

where

w ≡ z
(ρ

3

)1/4
=

z

τ1/3

(ρ0

3

)1/4
(

1 +
4γ′

1− 3β

)1/4

. (4.4)

In the absence of viscosity, the above result is reduced to that of ref. [8]. The first term

in the right-hand side of (4.3), that contains the viscous sub-leading corrections, is finite.

So the consideration of singularity does not give any further restriction to the viscosity

9The value of l is restricted to be 0 < l < 4 by the positive energy condition for (2.7) [8].
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term. If β > 5/3 the corrections due to the viscosity-dependence give smaller effects in the

metric than the non-viscous O(τ−4/3) corrections which are already discarded in the late

time geometry. So up to our approximation, the viscous effect is not visible in this case.

For β = 1/3 case, the viscous corrections are leading order. We find that the met-

ric (3.13), where ρ0

3
1

τ4/3 is replaced with the second term of ρ in (2.11), gives the late time

geometry10 as mentioned in section 3.2. (RMNKL)2 at the leading order is given in the

same form as that of (4.3) where the ρ in w = z(ρ/3)1/4 has to be taken from the second

term of (2.11). There is no divergence at the leading order, although the value of β is not

consistent with the hydrodynamics because of the dominance of the viscous corrections.

Altogether, our geometry is regular and the viscosity effect is meaningful in the re-

gion of

1/3 ≤ β < 5/3. (4.5)

Indeed, β = 1 is within this region. This means that in the late time geometry (or the late

time fireball dynamics), the viscous term gives visible contribution to the dynamics of the

fireball.

5. Conclusions

We considered the gravity dual of large-Nc N = 4 SYM fluid undergoing one-dimensional

expansion with account of shear viscosity. We obtained the late time bulk geometry to the

minimal order of the viscous corrections in the analytic form. We found that our viscous

corrections do not break the regularity within our approximation. We also found that

the time evolution of the thermodynamic quantities given by the late time geometry is

consistent with the hydrodynamic analyses.

We saw that the holographic dual of the hydrodynamics contains much more infor-

mation than the hydrodynamics, since AdS/CFT already contains essential information of

microscopic gauge theory dynamics. For example, the holographic dual of the hydrody-

namics gave a simple derivation of Stefan-Boltzmann’s law in the strongly coupled region

with precise Stefan-Boltzmann constant. The integration constant in the hydrodynamic

equation was also given by looking at the horizon of the dual geometry.

We believe that by probing the resulting geometry, one can extract many of information

on strongly interacting systems in principle. It is important to compute various physical

quantities based on the obtained geometry [19]. We can also consider various extensions of

the present work. Inclusion of the higher-order corrections, generalization to the systems

with chemical potential, consideration of the systems with three-dimensional expansion are

possible directions. One can also consider the effects of the bulk viscosity whose presence

violates the conformal invariance. In the real QCD, conformal invariance must be broken

and including it might be relevant for more realistic account of RHIC fireball. We hope

that the present work will shed light on AdS/CFT for non-static non-equilibrium systems

and holographic description of RHIC physics.

10In this case, the late time limit should be taken by fixing v = z(log τ )1/4/τ 1/3.
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A. Derivation of metric (3.17)

First, we find the following expressions by solving the Einstein’s equation recursively to

the order of v28:

gττ (τ, v) = −1 + 3a− 4a2 + 4a3 − 4a4 + 4a5 − 4a6 + 4a7 + · · ·

−2η0v
4

τ2/3

(
1 +

4a

3

(
−2 + 3a− 4a2 + 5a3 − 6a4 + 7a5 + · · ·

))
+O(τ−4/3),

gyy(τ, v)

τ2
= 1 + a− 2η0v

4

τ2/3

(
1 +

2a

3

(
1 +

a

3
+
a2

3
+
a3

5
+
a4

5
+
a5

7
+ · · ·

))
+O(τ−4/3),

gxx(τ, v) = 1 + a+
2η0v

4

τ2/3

a

3

(
1 +

a

3
+
a2

3
+
a3

5
+
a4

5
+
a5

7
+ · · ·

)
+O(τ−4/3), (A.1)

where a = ρ0v
4/3.

The power series in the right-hand sides are re-summed to give the analytic form of

the metric:

gττ (τ, v) = − (1− ρ0v4

3 )2

1 + ρ0v4

3

− 2η0v
4

3τ2/3

(1− ρ0v4

3 )(3 + ρ0v4

3 )

(1 + ρ0v4

3 )2
+O(τ−4/3),

gyy(τ, v)

τ2
= 1 +

ρ0v
4

3
− 2η0v

4

3τ2/3

(
1 +

1 + ρ0v4

3
ρ0v4

3

log

(
1 + ρ0v4

3

1− ρ0v4

3

))
+O(τ−4/3),

gxx(τ, v) = 1 +
ρ0v

4

3
− 2η0v

4

3τ2/3

(
1− 1

2

1 + ρ0v4

3
ρ0v4

3

log

(
1 + ρ0v4

3

1− ρ0v4

3

))
+O(τ−4/3), (A.2)

We can check explicitly that (A.2) is indeed the solution of the Einstein’s equation that is

accurate to the order of τ−2/3. The important feature of (A.2) is that all the terms at the

order of τ−2/3 are proportional to η0. up to O(γ2) terms:

gττ (τ, v) = − (1− ρ0(1−2γ)v4

3 )2

1 + ρ0(1−2γ)v4

3

+O(τ−4/3),

gyy(τ, v)

τ2
=

(
1 +

ρ0(1− 2γ)v4

3

)(
1− 2γ log

(
1 + ρ0(1−2γ)v4

3

1− ρ0(1−2γ)v4

3

))
+O(τ−4/3),

gxx(τ, v) =

(
1 +

ρ0(1− 2γ)v4

3

)(
1 + γ log

(
1 + ρ0(1−2γ)v4

3

1− ρ0(1−2γ)v4

3

))
+O(τ−4/3), (A.3)
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or more simply,

gττ (τ, v) = − (1− ρ0(1−2γ)v4

3 )2

1 + ρ0(1−2γ)v4

3

+O(τ−4/3),

gyy(τ, v)

τ2
=

(
1 +

ρ0(1− 2γ)v4

3

)(
1 + ρ0(1−2γ)v4

3

1− ρ0(1−2γ)v4

3

)−2γ

+O(τ−4/3),

gxx(τ, v) =

(
1 +

ρ0(1− 2γ)v4

3

)(
1 + ρ0(1−2γ)v4

3

1− ρ0(1−2γ)v4

3

)γ
+O(τ−4/3). (A.4)

The differences among (A.2), (A.3) and (A.4) are at the order of O(τ−4/3) (that is the

same order of O(γ2)) and they share the same terms to the order of γ.

B. Second order formalism of dissipative relativistic hydrodynamics

In this appendix, we briefly introduce the causal dissipative relativistic hydrodynamics that

is also referred to the second order dissipative relativistic hydrodynamics. We shall show

that the first order formalism we have employed gives a good approximation of the second

order formalism at the late time in our setup.

It is known that the first order formalism of the dissipative relativistic hydrodynamics

has a problem; the viscous and the thermal signal propagates instantaneously and causality

is broken. (See for example, [16].) In the second order formalism [18], the relaxation time

of the fluid is introduced to maintain the causality. The energy density evolution equation

in our setting is [16]:

dρ

dτ
= −4

3

ρ

τ
+

Φ

τ
, (B.1)

where

Φ =
4

3

η

τ
(the first order formalism), (B.2)

τπ
dΦ

dτ
= −Φ +

4

3

η

τ
(the second order formalism), (B.3)

and τπ is the relaxation time of the system. Note that the τπ → 0 limit gives the first order

formalism.

Let us evaluate the difference between the first order formalism and the second order

formalism for our case. We begin with the assumption that the proper time dependence of

the shear viscosity is given by (2.9). Substituting (2.9) to (B.3), we find

Φ =
4

3

η

τ

{
1 + (1 + β)

τπ
τ

+ (1 + β)(2 + β)
(τπ
τ

)2
+ · · ·

}

+ constant× e−τ/τπ . (B.4)

This means that the second order formalism approaches to the first order formalism when

τπ
τ
¿ 1. (B.5)

– 13 –



J
H
E
P
0
9
(
2
0
0
6
)
0
2
0

Therefore, our analyses based on the first order formalism (2.8) with assumption (2.9)

and the late time approximation are self-consistent. The condition (B.5) also agrees with

our basic assumption that the microscopic time scale τπ is short enough comparing to the

macroscopic time scale so that the hydrodynamic description is valid. Small value of τπ
also matches the fact that our fluid consists of strongly interacting particles.

C. Consistency of η = η0/τ with η ∼ T 3

Let us check self-consistency of our assumption (2.13). Starting with η = η0/τ , the energy

density is given as

ρ(τ) =
ρ0

τ4/3
(1− 2γ) , (C.1)

where

γ ≡ η0

ρ0τ2/3
. (C.2)

The relationship η ∝ T 3 ∝ ρ3/4 makes further corrections to the shear viscosity like

η =
η0

τ
{1 +O(γ)} , (C.3)

and the O(γτ−1) correction in (C.3) makes further corrections to the energy density recur-

sively. However, all such corrections are at the higher order of γ and we can neglect them

if γ ¿ 1. Let us define our approximation precisely:

• We consider only the region of γ ¿ 1.

• We consider ητ to the order of 1 and ρτ 4/3 to the order of γ. In other words, we

consider only to the order of η0.

The above makes our framework to be self-consistent.11 Note that the positive energy

condition for (C.1) is also guaranteed in the above approximation.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200];

S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109];

E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150].

[2] S.-J. Sin and I. Zahed, Holography of radiation and jet quenching, Phys. Lett. B 608 (2005)

265 [hep-th/0407215].

11The physical meaning of γ ¿ 1 is that the contribution of the shear viscosity to the energy density is

small. This is also a necessary condition to justify the hydrodynamic treatment of the system.

– 14 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB428%2C105
http://arxiv.org/abs/hep-th/9802109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C253
http://arxiv.org/abs/hep-th/9802150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB608%2C265
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB608%2C265
http://arxiv.org/abs/hep-th/0407215


J
H
E
P
0
9
(
2
0
0
6
)
0
2
0

[3] H. Nastase, The RHIC fireball as a dual black hole, hep-th/0501068; DBI skyrmion, high

energy (large s) scattering and fireball production, hep-th/0512171; More on the RHIC

fireball and dual black holes, hep-th/0603176.

[4] E. Shuryak, S.-J. Sin and I. Zahed, A gravity dual of rhic collisions, hep-th/0511199.

[5] O. Aharony, S. Minwalla and T. Wiseman, Plasma-balls in large-N gauge theories and

localized black holes, Class. and Quant. Grav. 23 (2006) 2171 [hep-th/0507219].

[6] E.V. Shuryak, What rhic experiments and theory tell us about properties of quark-gluon

plasma?, Nucl. Phys. A 750 (2005) 64 [hep-ph/0405066];

M.J. Tannenbaum, Recent results in relativistic heavy ion collisions: from ’a new state of

matter’ to ’the perfect fluid’, Rept. Prog. Phys. 69 (2006) 2005–2060 [nucl-ex/0603003].

[7] For earlier attempts for QCD-like models, see for example the following reviews and the

references therein: O. Aharony, The non-AdS/non-CFT correspondence, or three different

paths to QCD, hep-th/0212193;

A. Zaffaroni, RTN lectures on the non AdS/non CFT correspondence, PoS(RTN2005)005 at

http://pos.sissa.it/;

More recent proposals are: T. Sakai and S. Sugimoto, Low energy hadron physics in

holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141]; More on a

holographic dual of QCD, Prog. Theor. Phys. 114 (2006) 1083 [hep-th/0507073];

J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons,

Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128];

L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl.

Phys. B 721 (2005) 79 [hep-ph/0501218].

[8] R.A. Janik and R. Peschanski, Asymptotic perfect fluid dynamics as a consequence of

AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162].

[9] R.A. Janik and R. Peschanski, Gauge/gravity duality and thermalization of a boost-invariant

perfect fluid, Phys. Rev. D 74 (2006) 046007 [hep-th/0606149].

[10] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and

renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595

[hep-th/0002230].

[11] K. Skenderis, Lecture notes on holographic renormalization, Class. and Quant. Grav. 19

(2002) 5849 [hep-th/0209067].

[12] J.D. Bjorken, Highly relativistic nucleus-nucleus collisions: the central rapidity region, Phys.

Rev. D 27 (1983) 140.

[13] P.F. Kolb and U.W. Heinz, Hydrodynamic description of ultrarelativistic heavy-ion collisions,

nucl-th/0305084.

[14] E. Shuryak, Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid?,

Prog. Part. Nucl. Phys. 53 (2004) 273–303 [hep-ph/0312227].

[15] G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4

supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066].

[16] A. Muronga, Causal theories of dissipative relativistic fluid dynamics for nuclear collisions,

Phys. Rev. D 69 (2004) 034903 [nucl-th/0309055].

[17] S.S. Gubser, I.R. Klebanov and A.W. Peet, Entropy and temperature of black 3-branes, Phys.

Rev. D 54 (1996) 3915 [hep-th/9602135].

– 15 –

http://arxiv.org/abs/hep-th/0501068
http://arxiv.org/abs/hep-th/0512171
http://arxiv.org/abs/hep-th/0603176
http://arxiv.org/abs/hep-th/0511199
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C23%2C2171
http://arxiv.org/abs/hep-th/0507219
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CA750%2C64
http://arxiv.org/abs/hep-ph/0405066
http://arxiv.org/abs/nucl-ex/0603003
http://arxiv.org/abs/hep-th/0212193
http://pos.sissa.it/
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C113%2C843
http://arxiv.org/abs/hep-th/0412141
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C114%2C1083
http://arxiv.org/abs/hep-th/0507073
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C95%2C261602
http://arxiv.org/abs/hep-ph/0501128
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB721%2C79
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB721%2C79
http://arxiv.org/abs/hep-ph/0501218
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C045013
http://arxiv.org/abs/hep-th/0512162
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C046007
http://arxiv.org/abs/hep-th/0606149
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C217%2C595
http://arxiv.org/abs/hep-th/0002230
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C19%2C5849
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C19%2C5849
http://arxiv.org/abs/hep-th/0209067
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD27%2C140
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD27%2C140
http://arxiv.org/abs/nucl-th/0305084
http://arxiv.org/abs/hep-ph/0312227
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C87%2C081601
http://arxiv.org/abs/hep-th/0104066
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C034903
http://arxiv.org/abs/nucl-th/0309055
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C3915
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C3915
http://arxiv.org/abs/hep-th/9602135


J
H
E
P
0
9
(
2
0
0
6
)
0
2
0

[18] W. Israel, Nonstationary irreversible thermodynamics: a causal relativistic theory, Ann. Phys.

(NY) 100 (1976) 310;

W. Israel and J.M. Stewart, Transient relativistic thermodynamics and kinetic theory, Ann.

Phys. (NY) 118 (1979) 341.

[19] S. Nakamura and S-J. Sin, work in progress.

– 16 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C100%2C310
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C100%2C310
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C118%2C341
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C118%2C341

